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he recently described severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected mil-
lions of people, with thousands of fatalities. It has prompted global efforts in research, with focus on the
pathophysiology of coronavirus disease-19 (COVID-19), and a rapid surge of publications. COVID-19 has
been associated with a myriad of clinical manifestations, including the lungs, heart, kidneys, central ner-
vous system, gastrointestinal system, skin, and blood coagulation abnormalities. The endothelium plays a
key role in organ dysfunction associated with severe infection, and current data suggest that it is also
involved in SARS-CoV-2-induced sepsis. This critical review aimed to address a possible unifying mech-
anism underlying the diverse complications of COVID-19: microvascular dysfunction, with emphasis on
the renin-angiotensin system. In addition, research perspectives are suggested in order to expand under-
standing of the pathophysiology of the infection.
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Introduction
Seven (7) months after the first case descriptions of the
coronavirus disease 19 (COVID-19) and the identification of
the causal agent [1], the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) infection has been diagnosed in
almost 15,000,000 people and claimed .617,000 lives
(accessed 22 July 2020 https://coronavirus.jhu.edu/map.
html). Global efforts in research, including the pathophysi-
ology of COVID-19, have been undertaken, with a rapid and
rarely seen surge of publications related to a single disease,
within months [2]. Accordingly, COVID-19 has been associ-
ated with a myriad of clinical manifestations, including the
lungs [3], heart [4], kidneys [5], central nervous system [6],
gastrointestinal system [7], skin [8], and blood coagulation
abnormalities [9].
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During infection, the endothelium displays an essential
role in the physiological adaptive processes, adjusting blood
flow to regions of increased metabolic demand and enabling
the access of immune defence cells to the site of infection [10].
When activated by sepsis, dysfunctional endothelium can
lead to intravascular thrombosis, amplification of the in-
flammatory process and disturbances in regional blood flow
[11]. As a consequence, endothelial dysfunction is considered
the main factor leading to organ failure in sepsis [12]. Un-
derstanding the molecular pathways involved in vascular
pathophysiology during sepsis is a key step towards the
development of therapy strategies.
The renin-angiotensin system (RAS) is essential for

vascular homeostasis, with actions ranging from plasma
volume regulation to vascular tone and inflammation [13,14].
In severe bacterial sepsis, previous studies have
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demonstrated RAS activation [15,16]. Severe COVID-19 has
been viewed as viral sepsis, followed by exuberant cytokine
production [17], and also associated with RAS imbalance.
The present review aimed to address microvascular

dysfunction as a possible unifying mechanism underlying
the diverse manifestations of COVID-19, with emphasis on
the interactions with RAS.
COVID-19 as a Microvascular
Disease
Microcirculation is well recognised as a component of the
response to pathogens, which can be either adaptive or
dysfunctional. The physiological microvascular response that
occurs in mild to moderate infection characterises most of the
classical signs of inflammation (Latin, calor, dolor, rubor,
tumor) and is a direct result of cytokine-driven vasodilation
at the site of pathogen inoculation [18]. Contrary to this are
the extensive abnormalities of endothelial function, which
may occur in sepsis, associated with disseminated intravas-
cular coagulation (DIC) [19] and a heterogeneous vasomotor
response, where hypotension and shock are associated with
microvascular vasoconstriction [20]. Previous evidence of
microvascular dysfunction associated with acute viral infec-
tion was provided during the influenza A (H1N1) pandemic.
Salgado et al. evaluated microcirculation in critical patients
with acute lung injury [21]. The degree of microvascular
dysfunction correlated with the severity of the disease, as
measured by the Sequential Organ Failure Assessment
(SOFA) score.
The effects of inflammation on endothelial cells include

increased expression of adhesion molecules, stimulated by
proinflammatory cytokines and chemokines such as IL-1b and
TNF-a, and C-reactive protein, that is produced in response to
IL-6, amongst others [22,23]. Thrombotic phenomena, reflect-
ing a close relationship between increased proinflammatory
cytokines, may ensue endothelial dysfunction and vascular
thrombosis. Patients with severe COVID-19 have displayed
the ‘cytokine storm’ [24], in which proinflammatory cytokines
are increased, culminating in multiorgan injury. This has been
hypothesised as an exaggerated host immune system
response, similar to the findings of other severe viral pneu-
monias such as influenza, avian influenza, and severe acute
respiratory syndrome [25,26]. The vicious cycle involving
cytokine overproduction andmicrovascular endothelial injury
appears to be an essential factor leading patients with severe
COVID-19 to multiple organ failure and even death [27,28].
Thus, therapeutic interventions to mitigate inflammatory or-
gan injury have been proposed, and the beneficial role of
corticosteroids for patients with COVID-19 who required
respiratory support has recently been shown in the Rando-
misedEvaluation of Covid-19 Therapy (RECOVERY) trial [29].
Interestingly, another effect of corticosteroids, via mineralo-
corticoid receptor binding, has also been suggested in
COVID-19, with possible interplay with RAS [30].
Most current studies of COVID-19 are focussed on the
macrocirculation, evaluating systemic arterial pressure, the
use of vasopressors, and systemic markers of impaired tissue
perfusion such as lactate. As a consequence, the reported
prevalence of septic shock in adults with a diagnosis of
COVID-19 ranges between 20–35%, according to the popu-
lation studied, the severity of the patient sample and the
definition of septic shock that is used [31,32].

Notwithstanding, mounting evidence suggests that
microcirculation is a key player of SARS-CoV-2-induced
pathophysiology. The angiotensin-converting enzyme type
2 (ACE2) is described as the receptor required for the viral
particle cell entry [33]. This process involves priming of the
viral surface spike (S) protein by the host cell serine protease
TMPRSS2, as a prerequisite for cell and viral membrane
fusion [33]. In addition, viral S protein has been demon-
strated to induce downregulation of ACE2 [34]. These find-
ings, together with the previous demonstration of ACE2 and
TMPRSS2 expression in endothelial cells [35,36], along with
other molecules involved in viral infection [37], provide a
pathophysiological mechanism to support the hypothesis of
direct viral infection of endothelial cells.

Recent autopsy studies have offered histological evidence
of SARS-CoV-2 inside human endothelial cells. The study by
Varga et al. evaluated post-mortem samples obtained from
three severe COVID-19 patients. In one of them, electron
microscopy revealed the presence of viral inclusions in kid-
ney endothelial cells. In the other two patients, light micro-
scopy results suggestive of endotheliitis (characterised by an
accumulation of inflammatory cells associated with the
endothelium, as well as apoptotic bodies) were found in
samples recovered from the lungs, heart, kidneys, and small
intestine [38]. The case-report study by Paniz-Mondolfi et al.
analysed post-mortem specimens from the frontal lobe of a
74-year-old male patient with SARS-CoV-2 infection diag-
nosed by a positive nasopharyngeal swab test by real-time
reverse transcription-polymerase chain reaction (RT-PCR).
The transmission electron microscopy sections revealed the
presence of viral particles within cytoplasmic vacuoles of
brain capillary endothelial cells [39]. In addition, in the study
by Menter et al., autopsy specimens obtained from the kid-
neys of two COVID-19 patients were analysed with electron
microscopy, finding virus-like particles inside cytoplasmic
vesicles of activated glomerular endothelial cells [40].

Recently, Damiani et al. presented the first in vivo evalu-
ation of the microcirculation in patients with SARS-CoV-2
severe pneumonia [41]. The authors studied sublingual
microcirculation, finding an inverse correlation between
perfused vessel density and D-dimer levels. This study pro-
vided a direct association between human microvascular
dysfunction and coagulopathy in severe COVID-19.
Thrombotic Disease in COVID-19
A second significant aspect of SARS-CoV-2-induced endo-
thelial dysfunction is a procoagulant state. This phenomenon
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has important consequences on the pulmonary complications
of COVID-19. Post-mortem examination of COVID-19
elderly, hypertensive, obese, and male patients has shown
that impaired microcirculation was characterised by pul-
monary capillary alterations and the presence of capillary
microthrombi [40].
The association between microvascular disease and hy-

percoagulability (expressed by increased D-dimer) has pre-
viously been recognised in patients with traditional
cardiovascular risk factors, including diabetes [42,43].
Additionally, hypercoagulability has been shown to accom-
pany the progression of atherosclerosis-associated endothe-
lial dysfunction [44]. Increased D-dimer levels are frequently
found among patients with COVID-19, especially in those
with severe disease, and are associated with worse prog-
nosis, including increased risk of intensive care admission,
mechanical ventilation and death [45–47]. For these reasons,
D-dimer monitoring may be considered valuable in decision-
making and patient care, as lower mortality has been re-
ported in patients with increased D-dimer who were treated
with heparin, compared with those who were not [48].
Intravascular thrombosis has been reported in the macro-

circulation and microcirculation in COVID-19. A pulmonary
thromboembolic disorder may play an important role in the
pathophysiology of respiratory failure in COVID-19, either
as large-vessel pulmonary thromboembolism (present in 81%
of the critically ill patients from the series by Klok et al. [49])
or as microthrombosis. In an autopsy study of 10 patients
with COVID-19, Dolhnikoff et al. observed exudative and
proliferative diffuse alveolar damage, with intense epithelial
viral cytopathic effects involving the alveolar and small
airway epithelium, with little lymphocytic infiltration, and
presence of fibrinous thrombi in small pulmonary arterioles
in areas of both damaged and preserved lung parenchyma in
eight out of 10 cases. Endothelial tumefaction and a large
number of pulmonary megakaryocytes in the pulmonary
capillaries were other indicators of activation of the coagu-
lation cascade. These pathological observations were
supportive of the concept of microthrombosis in severe
COVID-19 [50].
Escher et al. [51] reported a case of a patient with COVID-

19 complicated with acute respiratory distress syndrome
(ARDS) and greatly increased von Willebrand factor (VWF),
who improved after full anticoagulation. The increased VWF
suggested massive endothelial stimulation and damage, with
release of VWF. Magro et al. described five individuals with
severe COVID-19 and complement-mediated microvascular
injury, which was noted in the lungs and/or skin [52]. All
patients had ARDS and three also had purpuric skin lesions.
Of note, patients did not display classic histopathological
features of ARDS, but pulmonary findings included signifi-
cant deposits of complement components in the microvas-
culature. The pulmonary abnormalities were largely
restricted to alveolar capillaries, indicating a thrombotic
microvascular injury that would explain the increased dead
space fraction, with respiratory failure accompanied by
greater lung compliance and less pulmonary consolidation
than in typical ARDS. The skin lesions showed a pattern of
thrombogenic vasculopathy, with deposition of C5b-9 and
C4d in both grossly involved and normally-appearing skin.
A remarkable clinical finding with important vascular

implications in COVID-19 was studied by Liu et al. They
described elevated plasma angiotensin II (Ang II) levels in
COVID-19 patients when compared with healthy in-
dividuals, which positively correlated with more severe lung
injury [53]. Although observed in a small sample of patients,
these data suggest, in combination with the known procoa-
gulant effects of Ang II (including stimulus of the expression
of tissue factor [54]), a possible pathophysiological link be-
tween RAS imbalance and COVID-19-related intravascular
thrombotic disease.
The proinflammatory actions of Ang II involve innate and

adaptive immune responses [14]. Accordingly, mice chroni-
cally infused with Ang II display increased vascular oxida-
tive stress and macrophage infiltration, cytokine production
and endothelial dysfunction. All of these effects were
prevented by an immunologic approach, by infusing the
anti-inflammatory regulatory T lymphocytes (Tregs) [55].
RAS Imbalance and SARS-CoV-2
Infection
The RAS is an essential component of vascular homeostasis,
where the key enzymes ACE and ACE2 display antago-
nistic actions. Ang II produced by ACE induces oxidative
stress, cell proliferation and inflammation [56]. Conversely,
Ang-(1-7), the end product of the enzymatic action of
ACE2, is associated with antioxidant and antiinflammatory
effects [57].
Renin-angiotensin system imbalance has previously been

suggested in bacterial sepsis. Evaluating the plasma of septic
patients, Boldt et al. found higher circulating levels of Ang II
when compared with controls, which were suppressed with
the administration of the ACE inhibitor enalaprilat [15]. These
findings were expanded by Doerschug et al., who identified
that increased Ang II and plasma renin activity in septic sub-
jects were associated with microvascular dysfunction [16].
Literature investigating the association betweenviral infection
andRAS is scarce. Evaluating patientswith chronic hepatitis C
infection, Powell et al. found an association between hepatic
fibrosis and one polymorphism in the angiotensinogen gene,
which was related to increased Ang II synthesis [58].
The modulation of RAS in sepsis has been evaluated as a

potential therapy by different approaches in the last decade.
In the study with enalaprilat mentioned above [15] with a
small number of patients (n=40), there was no difference in
survival rate compared with the control group. Akpinar et al.
investigated the effects of the renin inhibitor aliskiren in
bacterial sepsis-induced acute lung injury in rats [59]. The
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authors found a reduction in plasma Ang II, which was
associated with a reduction of oxidative stress markers and
cytokine expression in lung tissue, including IL-6 and TNF-a.
Similar results were obtained in rodents with reduced lung
injury during sepsis, which was associated with plasma
decrease of IL-6 and TNF-a, using the angiotensin receptor
blockers (ARBs) losartan [60] and candesartan [61]. ACE2
has also been associated with the potential beneficial effects
of pharmacological interventions in RAS. Imai et al. showed
that the administration of recombinant ACE2 reduced lung
injury in mice during bacterial sepsis [62]. In addition, the
administration of ACE inhibitors and ARBs increased the
cardiac expression of ACE2 and plasma Ang-(1-7) in mice
[63]. Indirect clinical evidence of the potential benefits of RAS
modulation in infection was provided by a meta-analysis of
37 studies, which evaluated the effects of ACE inhibitors and
ARBs in the risk of pneumonia [64]. The authors found that
ACE inhibitors reduced the risk of pneumonia and
pneumonia-related mortality, a benefit that was extended to
high-risk patients, including those with heart failure and
stroke.
Evidence suggesting a coronavirus-induced imbalance

between ACE and ACE2 actions was previously provided
by Kuba et al., who demonstrated, in the airways of mice
that had been exposed to the related virus SARS-CoV, that
ACE2 downregulation was associated with a local in-
crease of Ang II [34]. Clinical studies with COVID-19
patients have demonstrated that blood levels of TNF-a
and IL-6 are increased and positively correlate with dis-
ease severity [65]. Both cytokines are associated with
endothelial barrier breakdown in sepsis [66] and reduced
by Ang-(1-7) [67].
This working hypothesis of the vascular effects of SARS-

CoV-2 is even more relevant in view of clinical evidence
from cohorts in at least three continents identifying cardio-
vascular disease and particularly hypertension as important
risk factors associated with worse prognosis of COVID-19
[68–70]. Indeed, in hypertensive patients, RAS was found
to be imbalanced towards ACE activation [71], with ACE
and Ang II expressed in higher levels in vascular tissues of
patients exposed to cardiovascular risk factors [72].
Considering the preliminary and fast growing amount of

available experimental and clinical evidence, endothelial
dysfunction may occur as a direct effect of the tropism of
SARS-CoV-2 for vascular tissue, inducing or potentiating a
previous imbalance (as in cardiovascular and metabolic
disease patients) of intracellular RAS. These phenomena,
together with pre-existing endothelial injury that accom-
panies comorbidities – such as hypertension, diabetes, coro-
nary artery disease, and obesity – may predispose to more
severe presentations, faster evolution and worse prognosis of
the disease. As the ultimate result, extensive endothelial cell
damage ensues, with organ dysfunction and circulatory
collapse. A schematic representation of the mechanisms
proposed for COVID-19 pathophysiology regarding RAS
and microcirculation is shown in Figure 1.

Research Perspectives
The interplay between RAS and the microcirculation in
SARS-CoV-2 infection brings up the opportunity of
exciting research perspectives. It is vital to understand
the dynamics of microcirculatory function during the
clinical evolution of COVID-19, with particular interest
in the largely unknown initial oligosymptomatic stage.
Early signs of endothelial dysfunction were previously
identified in human microcirculation, days before the
clinical diagnosis of bacterial disease [73]. Indeed, a
timely therapeutic action in the early phase is a key
principle of sepsis management [74]. As a consequence,
microcirculation evaluation, which can be performed at
the bedside with non-invasive methods [75], may offer
important clinical data regarding prognosis and treat-
ment effects [76].

Another important issue in current comprehension of
COVID-19 is to further investigate preliminary reports of
young patients without known risk factors presenting severe
disease, with vascular manifestations including stroke [77]. A
number of pathophysiological mechanisms are proposed
regarding this complication and should be subject of future
research. These include direct central nervous system endo-
thelial infection [39], cytokine-induced local microcirculatory
dysfunction [78], and the development of antiphospholipid
antibodies [79].

It was previously known that ACE polymorphisms are
associated with vascular complications such as diabetic
nephropathy [80]. Furthermore, combinations of poly-
morphisms of both ACE and ACE2 have been associated
with the susceptibility of developing hypertension [81].
Another recent finding was reported by Bunyavanich
et al., who found an age-dependent expression of ACE2
in nasal epithelial cells of COVID-19 patients, with
adults displaying higher levels than children [82]. To
quantitatively or qualitatively evaluate RAS-related
genes and peptides in COVID-19 patients and their as-
sociation with disease progression are attractive research
possibilities.

The contribution of RAS in COVID-19 is also being studied
with therapeutic goals. There are 33 ongoing studies
currently registered in clinicaltrials.gov evaluating in-
terventions exploring the RAS axis, including ACE in-
hibitors, ARBs and Ang-(1-7) as treatment strategies
(accessed 22 July 2020 at https://clinicaltrials.gov/). The
imbalance of Ang II/Ang-(1-7) favouring the former in face
of reduction of ACE2 activity after binding of the coronavi-
rus suggests the possibility of beneficial effects of blockade of
the angiotensin type I receptor with angiotensin receptor
blockers.
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Figure 1 A schematic representation of mechanisms proposed for COVID-19 pathophysiology regarding the renin-angio-
tensin system.
Abbreviations: ACE, angiotensin-converting enzyme; ACE2, angiotensin-converting enzyme type 2; Ang-(1-7), angiotensin-
(1-7); Ang II, angiotensin II; ARDS, acute respiratory distress syndrome; IL-6, Interleukin-6; RAS, renin-angiotensin system;
ROS, reactive oxygen species; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; S protein, spike protein;
TNF-a, tumor necrosis factor-a.
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Conclusion
At present, the scientific community is beginning to un-
derstand the pathophysiology of COVID-19. The RAS is a
powerful homeostatic system, developed in the evolu-
tionary process hundreds of millions of years ago,
allowing salt and water retention essential for vertebrates
once they left their original marine environment [83], with
diverse fundamental roles in health and disease. Tradi-
tionally studied in the context of chronic cardiovascular
diseases, a renewed interest in RAS inflammatory and
microvascular actions has been prompted by the COVID-
19 pandemic. Understanding these mechanisms can lead
to more effective treatments for control of this global
pandemic.
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